32 research outputs found

    Development of hybrid aluminum-air battery fuel-cell system

    Get PDF
    Industrial 4.0 accelerates the need to introduce clean energy to accommodate the increase in electricity demand globally without causing environmental issues. Metal-air battery is a new type of energy storage system in which the metal anode is consumed to generate electricity through the electrochemical reaction. Among various types of the metal anode, aluminum is a promising energy carrier. Aluminum-air battery shows advantages such as high capacity, abundance, low cost, and being environmentally friendly. Traditional aqueous aluminum-air battery experiences restriction from application due to its self-corrosion issues. In this study, instead of reducing or limiting the self-corrosion issues, a different approach is proposed so to make use of the self-corrosion issues of the aluminum-air battery. By incorporating an additional hydrogen-air subcell to the aluminum-air battery, this hybrid system turned the self-corrosion issue into a beneficial reaction by utilizing the hydrogen gas produced from the aluminum anode as the fuel to power the hydrogen-air fuel cell and improving the overall power performance. The electrical performance of each system is studied experimentally using potassium hydroxide electrolytes. The hybrid system shows a great improvement as compared to a single system. The maximum power is improved by more than 40%. This study shows that the hybrid design is feasible in enhancing the aluminum-air battery performance and yet, maintaining low cost and low weight in nature

    Analysis of the Polypropylene-Based Aluminium-Air Battery

    Get PDF
    Global energy demand is rising due to the rapid development and adoption of new technologies in every sector. Hence, there is a need to introduce a clean energy source that does not cause damage to the environment. Aluminium-air battery with its high theoretical specific volumetric capacity is an exciting alternative for post-lithium energy storage and has been at the forefront of energy research for years. However, the conventional aqueous electrolyte-based aluminium-air battery with bulky liquid storage, parasitic corrosion of aluminium in contact with the electrolyte, and formation of a passive oxide or hydroxide layer has precluded its widespread application. In order to achieve successful simplification and cost-effectiveness, a novel idea of a polypropylene-based aluminium-air battery is proposed. In this work, a polypropylene-based aluminium-air battery was constructed using aluminium foil as an anode, carbon fiber cloth as an air-cathode, and Polypropylene and Kimwipes as the separator. The effects of the electrolyte concentration on the aluminium-air battery were investigated and analyzed using various discharge currents. The study showed that the performance of the polypropylene separator is better than that of the Kimwipes separator. The battery capacity is negatively correlated with the concentrations of the electrolyte. At a discharge current of 30 mA, the aluminium-air battery has a specific capacity of 375 mAh g−1 when 1 M of potassium hydroxide was used as electrolyte

    Numerical investigation for optimizing segmented micro-channel heat sink by Taguchi-Grey method

    Get PDF
    • Novel segmented micro-channel heat sink has been designed. • CFD models have been developed to simulate the performance of the segmented micro-channel. • Enhanced the cooling performance of the straight micro-channel. • Optimizing the segmented micro-channel using Taguchi-Grey method. • Optimized design parameters for segmented micro-channel have been identified. A B S T R A C T The scale-down trend increases the chips' density and the high power handling capability generates unnecessary heat which can disrupt the reliability of the electronic devices. Therefore, various types of cooling solution have been proposed to enhance heat dissipation from the electronic devices. One of the solution is using inexpensive straight-channel heat sink. However, the presence of large temperature gradient between the upstream and downstream in the straight-channel can shorten the life span of the device and subsequently reduce the reliability. In this study, a novel segmented micro-channel is introduced to improve the thermal performance of the straight-channel heat sink. Computational fluid dynamic analysis are performed to investigate the performance of the micro-channel heat sink. The bottom of the heat sink is subjected to a constant heat flux condition and water is used as a coolant. Following that, Taguchi-grey method is applied to optimize the design of the segmented micro-channel. The effect of fin width, fin length, fin transverse distance, number of segments, channel width and mass flow rate on the specific performance, variation of temperature and pressure drop are investigated. The results indicate that a three segments of segmented micro-channel, fin width-1 mm, fin length-2 mm, fin transverse distance-5 mm and channel width-1 mm have successfully enhance the heat transfer performance with minimum pressure drop. It is also found that the optimized micro-channel heat sink is able to cool the chip with heat flux of 800 W to 56.6 °C and pumping power of 0.13 W using 15 gs −1 of water

    A New Mixing Method for Lightweight Concrete with Oil Palm Shell as Coarse Aggregate

    No full text
    Oil Palm Shell (OPS) is the solid waste product from the palm oil sector of the agricultural industry. The substitution of coarse aggregate in concrete with OPS to produce lightweight concrete (LWC) had been researched since two decades ago. The author has discovered fluctuation on the performance of OPSLWC. One of the factors is the workability. As an initiative to enhance the performance of OPSLWC, the author proposes a new mixing method (NMM) modified from the mix design of self-compacting concrete (SCC). The effects of the NMM on the workability, uniformity, compressive strength and splitting tensile strength are investigated. The workability of the NMM is 25.5% higher than the conventional method (CM). The compressive strength shows an improvement of 5.76%; while the splitting tensile strength is increased by 22.35%. The new findings of this research have shown a positive impact on the concrete industry

    Experimental Analysis of Lightweight Fire-Rated Board on Fire Resistance, Mechanical, and Acoustic Properties

    No full text
    Using lightweight fire-rated board (LFRB) presents cost-effective opportunities for various passive fire protection measures. The aim of the project is to develop an LFRB with enhanced fire resistance, acoustic properties, and mechanical properties. These properties were determined using a Bunsen burner, furnace, energy-dispersive X-ray, impedance tube instrument, and Instron universal testing machine. To fabricate the LFRBs, vermiculite and perlite were blended with flame-retardant binders, and four types of LFRBs were produced. A fire test was conducted to compare the fire-resistance performance of the LFRBs with a commercially available flame-retardant board. The B2 prototype showed exceptional fire-resistant properties, with a temperature reduction of up to 73.0 °C, as compared to the commercially available fire-rated magnesium board. Incorporating nano chicken eggshell into the specially formulated flame-retardant binder preserved the LFRBs’ structural integrity, enabling them to withstand fire for up to 120 min with an equilibrium temperature of 92.6 °C. This approach also provided an absorption coefficient of α = 2.0, a high flexural strength of 3.54 MPa, and effective flame-retardancy properties with a low oxygen/carbon ratio of 2.60. These results make the LFRBs valuable for passive fire protection applications in the construction and building materials industry

    Development of advanced intumescent flame-retardant binder for fire rated timber door

    Get PDF
    Intumescent flame-retardant binder (IFRB) offers a great advancement for the most efficient utilization of a wide variety of passive fire safety system at the recent development. This article highlights the fire-resistance and thermal properties of the IFRB using Bunsen burner and thermogravimetric analysis. The five IFRB formulations were mixed with vermiculite and perlite for the fabrication of fire-resistant timber door prototypes. Additionally, the fire rated door prototypes were compared under 2 hours fire test. The prototype (P2), with a low density of 637 kg/m3 showed the superlative fire-resistance rating performance, resulting in temperature reduction by up to 58.9 °C, as compared with that of prototype (P1). Significantly, an innovative fire rated timber door prototype with the addition of formulating intumescent binder has verified to be effective in stopping fires and maintaining its integrity by surviving a fire resistance period of 2 hours

    Effects of Oil Palm Shell Coarse Aggregate Species on High Strength Lightweight Concrete

    No full text
    The objective of this study was to investigate the effects of different species of oil palm shell (OPS) coarse aggregates on the properties of high strength lightweight concrete (HSLWC). Original and crushed OPS coarse aggregates of different species and age categories were investigated in this study. The research focused on two OPS species (dura and tenera), in which the coarse aggregates were taken from oil palm trees of the following age categories (3–5, 6–9, and 10–15 years old). The results showed that the workability and dry density of the oil palm shell concrete (OPSC) increase with an increase in age category of OPS species. The compressive strength of specimen CD3 increases significantly compared to specimen CT3 by 21.8%. The maximum achievable 28-day and 90-day compressive strength is 54 and 56 MPa, respectively, which is within the range for 10–15-year-old crushed dura OPS. The water absorption was determined to be within the range for good concrete for the different species of OPSC. In addition, the ultrasonic pulse velocity (UPV) results showed that the OPS HSLWC attain good condition at the age of 3 days

    Effects of Low Volume Fraction of Polyvinyl Alcohol Fibers on the Mechanical Properties of Oil Palm Shell Lightweight Concrete

    Get PDF
    This paper presents the effects of low volume fraction (Vf) of polyvinyl alcohol (PVA) fibers on the mechanical properties of oil palm shell (OPS) high strength lightweight concrete mixtures. The slump, density, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity under various curing conditions have been measured and evaluated. The results indicate that an increase in PVA fibers decreases the workability of the concrete and decreases the density slightly. The 28-day compressive strength of oil palm shell fiber-reinforced concrete (OPSFRC) high strength lightweight concrete (HSLWC) subject to continuous moist curing was within the range of 43–49 MPa. The average modulus of elasticity (E) value is found to be 16.1 GPa for all mixes, which is higher than that reported in previous studies and is within the range of normal weight concrete. Hence, the findings of this study revealed that the PVA fibers can be used as an alternative material to enhance the properties of OPS HSLWC for building and construction applications

    Strength properties of renewable bio-based lightweight foam concrete incorporating of polypropylene fibre

    No full text
    This paper investigates the incorporating of renewable lightweight bio-based aggregate (RLWBBA) in lightweight foam concrete (LWFC). The aim of this research is to incorporate different volume fraction (Vf) of polypropylene (PP) fibre into LWFC to determine the optimum compressive strength and splitting tensile strength. Four different mix was designed containing different percentage of PP replacement (0, 0.1, 0.2 and 0.3%). From the results, the compressive strength of the oil palm shell lightweight foamed concrete with 0.3% of macro polypropylene fibre (OPSLWFC/0.3) had showed the highest compressive strength and splitting tensile strength at 28 days, which are recorded at 4.01 MPa and 0.62 MPa respectively. It also showed the lowest density among all the mix design which is 1152 kg/m3 under demoulded condition. The OPSLWFC/0.3 has increased about 23.38% of 28 days compressive strength and 37.78% of splitting tensile strength compared to the control mix, which contains 0% of fibre proportion. Hence, the findings of this research revealed that the development of environmentally friendly lightweight foamed concrete can be used as an alternative solution for traditional lightweight concrete
    corecore